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Abstract

In experimental social science, precise treatment effect estimation is of utmost importance,
and researchers can make design choices to increase precision. Specifically, block-randomized
and pre-post designs are promoted as effective means to increase precision. However, imple-
menting these designs requires pre-treatment covariates, and collecting this information may
decrease sample sizes, which in and of itself harms precision. Therefore, despite the literature’s
recommendation to use block-randomized and pre-post designs, it remains unclear when to
expect these designs to increase precision in applied settings. In this article, we present guide-
lines to assist researchers in navigating these design decisions. Using replication and simulated
data, we demonstrate a counterintuitive result: precision gains from block-randomized or
pre-post designs can withstand significant sample loss that may arise during implementation.
Our findings underscore the importance of incorporating researchers’ practical concerns into
existing experimental design advice.
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1 Introduction

Research design for randomized experiments is an area of active innovation in the social sciences

(Druckman and Green 2021). With new tools to simulate design choices (Blair et al. 2019) and

new norms like preregistration (Ofosu and Posner 2021), researchers are pushed to consider the

properties of their research design before collecting data. Amid growing concerns over the lack of

statistical power in most of quantitative political science (Arel-Bundock et al. 2022), one important

property is the precision of the procedure used to estimate treatment effects with experimental data.

Researchers have only one chance to conduct randomization, collect data, and generate an estimate

of the average treatment effect (ATE). The stakes are high, so decreasing the statistical variability

of the research design is key to detecting non-zero treatment effects when they exist.

Fortunately, researchers can consider multiple practices to improve precision at the research design

stage. One common strategy is to increase sample size if resources permit, even if only in the control

group (Gerber, Green, and Larimer 2008). Another main strategy to improve precision is to design

the experiment to reduce the variance of outcome measurements. Some designs decisions under

this strategy include using placebo conditions instead of pure controls to account for features of a

treatment that are not relevant (Broockman, Kalla, and Sekhon 2017), choosing the right balance

of abstraction and detail when crafting survey vignettes (Brutger et al. 2020), incentivizing survey

attention (Berinsky, Margolis, and Sances 2014; Kane, Velez, and Barabas 2023), or using an index

instead of a single outcome variable to reduce measurement error (Broockman, Kalla, and Sekhon

2017). All these strategies and more can increase precision, and thus make an experiment more

likely to recover an estimate closer to the true ATE.

In this article, we focus on two designs that rely on pre-treatment variables to enhance precision.

In particular, we revisit two precision-improving research designs that are promoted as particularly

simple and effective: (1) block randomization and (2) pre-post designs. With block randomization,

researchers create subgroups of units they expect to respond similarly to treatment. Then, random-

ization occurs separately within these groups, rather than across the entire sample. This improves

precision by reducing variation in potential outcomes within blocks (Imai, King, and Stuart 2008).

Pre-post designs adjust for a pre-treatment measure of the outcome, which can improve precision
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by controlling for a major source of variability (Clifford, Sheagley, and Piston 2021).

We assess block randomization and pre-post designs for four main reasons. First, we focus on these

designs because the literature explicitly recommends using them as particularly effective ways

to increase precision. Research shows that blocking is unlikely to hurt (Imai, King, and Stuart

2008; Pashley and Miratrix 2021a) and can greatly improve precision in applied settings (Moore

2012), hence the slogan “block what you can, randomize what you cannot” (Box et al. 1978,

103). Regarding repeated measures designs, recent work recommends researchers to implement

this design “whenever possible” to improve precision (Clifford, Sheagley, and Piston 2021, 1062).

Second, and most importantly, we focus on these designs because of literature’s promise of improved

precision assumes sample size is not affected by the decision to implement these designs. Yet

in practice, implementing these designs may decrease sample size, because their implementation

requires researchers collect additional information about units before administering experimental

treatments. Sample loss from implementing an alternative design may offset promised precision

gains in two ways, making it unclear how researchers should navigate these design decisions. First,

explicit sample loss happens when a study’s units drop from the experiment under an alternative

design when they would not under the standard design. For example, subjects recruited in a pre-

treatment survey wave may not be available again for the second wave containing the experimental

manipulation. Or, participants may drop from the study if a pre-treatment survey is too long or

contains too much political content. Second, implicit sample loss happens when investing in an

alternative design forces the researcher to settle with a smaller sample size, mainly for budgeting

reasons. For example, the choice to conduct both pre-treatment and post-treatment surveys could

lead a researcher to settle for a smaller sample than if a researcher devoted the entire budget to

only measuring outcomes post-treatment. Not all experiments that implement block randomized

or pre-post designs may face sample loss, however a design choice’s promise of increased precision

should be questioned if sample size is adversely affected by it, either explicitly or implicitly.

Third, despite the decisive advice in the literature that block randomized and pre-post designs

provide precision gains, they are not widely implemented in experimental political science. As

we will show in Section 4, these designs were implemented in only 15% (32/216) of a sample of
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experiments published in the 2022-2023 issues of six political science journals.1

Fourth, we focus on block randomization and pre-post designs because they represent a broader

class of design choices that require researchers to decide whether it is worth it to collect pre-

treatment information about covariates or outcomes, and if so, how to use it. Techniques like block

randomization increase precision via the randomization procedure, whereas pre-post designs reflect

strategies that increase precision by reducing noise in measured outcomes. Therefore, considering

these two design choices allows us to assist researchers in choosing not just whether to measure

pre-treatment information, but also what to do with it.

For these reasons, we develop guidelines to navigate the choice to implement block randomized

and pre-post designs when a researcher risks sample loss from these choices. We investigate the

problem from four perspectives. First, we make the competing components of precision clear,

taking a broad view of how sample size can be affected both explicitly and implicitly. Second, we

review the current use of these designs in applied experimental work, showing they are infrequently

used. We highlight the high stakes involved when deciding whether to implement these designs.

The benefits may be large, or the choice may actually harm precision. Third, to help researchers

consider the benefits of these designs, we present empirical evidence. We replicate three published

experiments, randomizing participants to either a block randomized, a pre-post, or a what we

call the “standard” design with complete randomization and post-treatment measurement of the

outcomes. Our goal is not to reassess substantive findings or conclusions. Instead, randomizing

participants to counterfactual designs provides us leverage on the consequences of implementing

these in practice for sample loss, increased precision, and more. Fourth, we conduct six simulation

studies using data from published experiments. These simulations illustrate how a researcher can

entertain alternative designs and potential sample loss before conducting an experiment.

Taking all of our evidence together, we echo the advice in the literature that block randomized

and pre-post designs improve precision, but draw attention to the fact this requires sample size

not be affected. The more complicated scenario arises when sample loss might occur. Critically,

our evidence and simulations show that highly predictive blocking covariates and pre-treatment

outcome measures can produce precision gains that withstand non-negligible sample loss. In other
1This evidence comports with the findings of Clifford, Sheagley, and Piston (2021) who find only 18% (12/67) of

a sample of experiments deviate from measuring only post-treatment outcomes.
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words, perhaps running counter to what a researcher would expect, sacrificing sample size in order

to implement block randomization or pre-post measurement may greatly increase precision. We also

provide cautionary advice. We show that these designs may inadvertently harm precision if sample

loss is likely to occur from their implementation and the incorporated pre-treatment information

is not strongly predictive of the outcomes. In the final section of the article, we summarize how

our findings can inform future experiments. By developing guidelines to determine whether the

investment in alternative designs is worth it, we further expand researchers’ ability to implement

experimental designs that will detect non-zero treatment effects when they exist across a broad

range of applications, and particularly in contexts when a researcher has a limited budget.

2 Designs to Improve Precision and Sample Loss

The most common experimental design implemented in the social sciences has two defining features.

First, it assigns treatments using simple or complete randomization (see Bowers and Leavitt 2020

for details). Second, it measures outcomes only after administering treatments. We refer to a

design using simple or complete randomization and post-treatment outcomes measurement only as

the “standard” design.

Precision concerns often motivate researchers to entertain alternative research designs. Researchers

can deviate from the standard design by choosing an alternative randomization procedure or an

alternative timing of the outcome measurement. Both strategies depend on the availability of pre-

treatment variables to be implemented. For example, one would need access to crime statistics to

assign treatments independently across low and high crime areas. When these variables are not

available, implementing alternative designs comes with the additional cost of collecting them.

In this article, we compare the standard design to three other designs highlighted in Table 1: block

randomized, pre-post, and their combination. We discuss each in turn.

2.1 Block Randomized Design

First, consider block randomization. Block randomization (or blocking) randomly assigns treatment

within subgroups of units that the researcher expects will respond similarly to the experimental
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Table 1: Alternatives to the standard experimental design

Outcome measurement
Post-only Pre-post

Randomization
Complete Standard Pre-post
Block Block randomized Block randomized & pre-post measures

interventions. This randomization procedure is advantageous because it creates mini-experiments

where the treatment and control groups’ potential outcomes are as similar as possible. Block

randomized designs can greatly improve precision in social science applications (e.g., Moore 2012)

and thus are highly recommended in the literature (e.g. King et al. 2007; Moore and Moore 2013;

Imai, King, and Stuart 2008; Pashley and Miratrix 2021b, 2021a). In fact, Imai, King, and Stuart

(2008) advise that when feasible, “blocking on potentially confounding covariates should always be

used” (493).

2.2 Pre-Post Design

The second dimension of design choices we consider is the timing of outcome measurement. The

majority of experiments in political science measure outcomes only post-treatment and compare

observed outcomes across treatment and control groups to estimate treatment effects (Clifford,

Sheagley, and Piston 2021). Precision can improve if pre-treatment measures of the outcomes

are collected before treatment assignment and used in estimation of treatment effects. In some

contexts, pre-treatment outcomes need to be measured in a separate wave than treatment admin-

istration. For example, interventions in field experiments may not involve a survey, so measuring

pre-treatment outcomes requires a separate wave to do so. In other contexts, such as many sur-

vey experiments, pre-treatment outcomes can be collected, treatment can be administered, and

post-treatment outcomes can be measured all in the same wave.

Pre-treatment outcomes can be used in one of two ways. First, pre-treatment measures can be used

to rescale the outcome as the difference between the two measures. Second, pre-treatment outcome

measures can also be used on the right-hand side of a regression model of treatment effects as a

form of covariate adjustment. A pre-treatment measure of the outcome is often the best predictor
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of a unit’s observed outcome, so controlling for this one piece of information can greatly improve

precision in estimated treatment effects.

2.3 Explicit and Implicit Sample Loss

While these design choices have clear statistical benefits, we draw attention to an important prac-

tical concern that often arises when researchers consider implementing them over the standard

design—a study may lose sample size as a result. While the literature’s recommendation to use

these designs assumes sample size is unaffected by the decision to implement them, in practice,

researchers often run into contexts where that is unlikely to be the case. This leaves the conditions

under which it is advantageous to implement these designs unclear. In this section, we outline how

sample size could be attenuated either explicitly or implicitly.

First, we refer to “explicit sample loss” as circumstances when the sample is already defined and

units that would finish the experiment under the standard design do not finish it under an al-

ternative design. For example, this could occur if the block randomization procedure discarded

units that would have been randomized to treatment under complete randomization.2 This type of

sample loss could also occur if the researcher adds many covariates to a pre-treatment survey for

blocking or repeated measures purposes, increasing survey fatigue. As a result, more units might

provide noisy or missing data or even drop from the survey than would under the standard design

where these additional covariates are not asked pre-treatment.

We also draw attention to the scenario where sample loss occurs implicitly. We refer to “implicit

sample loss” as loss happening when investing in an alternative design leads the researcher to settle

with a smaller sample size before the study is even fielded. This means implicit sample loss is

not something one can gather from looking at an experiment’s raw data. For example, with a

set budget, a researcher may settle for a smaller sample size in order to ask more questions in a

pre-treatment survey. Because her budget would have afforded her more units if she only asked

questions post-treatment according to the standard design, we call this implicit sample loss from
2Block randomization may invoke explicit sample loss because matched-pair designs (two treatment conditions

and two units per block) requires an even number of units, thus dropping one unit if there were an odd number of
units. Moreover, multivariate continuous blocking (Moore 2012) cannot be implemented with missing data, possibly
leading a researcher to drop incomplete cases to use key blocking covariates that include missingness.
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the alternative design.

Because circumstances and decisions that lead to implicit sample loss are not usually included in

published research, we provide two toy examples to understand how implicit sample loss occurs

at the design stage of a study. First, imagine a researcher wishes to conduct a survey experiment

with Prolific. Using this platform, a five minute survey with a non-representative sample of 1,000

respondents costs USD$1,173. Adding four extra pre-treatment questions that require two more

minutes to complete for the average participant increases the cost to $1,640. To keep the extra

questions and stay within budget, the researcher would need to reduce the sample size to about

720 respondents.3 The four additional pre-treatment questions would allow the researcher to use

a block randomized or pre-post design, but is 72% of a researcher’s potential sample a good trade

off?

Second, consider a field experiment needing to conduct an additional survey wave to collect pre-

treatment covariates. This is an extreme case that would imply, all else constant, the cost of

data collection doubles (i.e., administering two surveys instead of one). With a fixed budget, this

translates to retaining half of the sample that a standard design experiment would enjoy due to

implicit sample loss. Again, the additional pre-treatment information could have large precision-

increasing effects, but is it worth it to collect this information if the researcher can then only afford

half as many subjects? In this article, we outline how a researcher can approach these questions.

3 Balancing Precision and Retention Under Alternative Designs

In this section, describe the standard experimental research design and illustrate how implementing

an alternative design to increase precision requires a researcher balance sample retention concerns,

as well.
3This follows from the cost calculator at https://www.prolific.co/old/pricing, assuming the default hourly rate of

USD$10.54 per respondent as of February 21, 2023.
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3.1 The Standard Experimental Design

Consider an experiment in a sample of N units indexed by i = {1, 2, 3, ..., N}. For simplicity,

consider a binary treatment so that Zi = {0, 1} denotes unit i’s treatment assignment. Using

the Neyman–Rubin potential outcomes framework, assume two potential outcomes, one if a unit

receives treatment (Yi(1)) and one if the unit receives the control (Yi(0)). We assume that potential

outcomes satisfy SUTVA and excludability, and that treatment is randomly assigned.

The first defining feature of what we will call the “standard experimental design” pertains to the

random assignment, which could be either complete or simple randomization. With a sufficiently

large sample size, both randomization procedures yield equivalent treatment assignments in expec-

tation, so we focus on complete randomization for the sake of exposition (see Bowers and Leavitt

2020 for details). With a binary treatment, complete randomization randomly permutes N units

and assigns the first m units to treatment and the remaining N − m to control. Thus, the vector

of random treatment assignments Z = {Z1, ..., ZN }⊤ contains a fixed number of m units assigned

to treatment and N − m assigned to control.

The second defining feature of the standard experiment is that it only measures outcomes after

administering treatments. Unit i’s potential outcomes relate to its observed outcome Yi using the

following switching equation: Yi = ZiYi(1) + (1 − Zi)Yi(0), and Yi is observed after treatment.

In this article, we are interested in the average treatment effect as our estimand, as it is the

most common quantity of interest in social science applications: ATE = E[Yi(1) − Yi(0)]. We

can obtain an unbiased estimate of the ATE by calculating the difference in the average observed

outcome in the treatment and control groups: ÂTE = E[Yi(1)|Zi = 1] − E[Yi(0)|Zi = 0] =[
1
m

∑m
i=1 Yi

]
−

[
1

N−m

∑N
m+1 Yi

]
.

The true standard error of the difference in means estimator (Gerber and Green 2012, 57) under

the standard design is

SE(ÂTEStandard) =

√
m

N−mVar(Yi(0)) + N−m
m Var(Yi(1)) + 2Cov(Yi(0), Yi(1))

N − 1 . (1)

If we assume half of the participants are assigned to treatment and half to control (m = N/2) it
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simplifies to

SE(ÂTEStandard) =

√
Var(Yi(0)) + Var(Yi(1)) + 2Cov(Yi(0), Yi(1))

N − 1 . (2)

This formula represents the standard deviation of the distribution of all ÂTE’s given all possible

random assignments.

The simplest alternative to improve precision would be to increase the sample size. Because of the

factor 1√
N−1 in SE(ÂTEStandard), to cut the standard error in half under the standard design, a

researcher would need four times the sample size. Increasing N enough to meaningfully increase

precision is often not an option for researchers. In most applications this is cost prohibitive.

Moreover, even if cost is not an issue, not all populations of interest can be increased to a trivially

large sample size, as may be the case if conducting a survey experiment with a sample of Black

Americans (Burge, Wamble, and Cuomo 2020) or white Evangelical Americans (Adida et al. 2022).

Likewise, many field experiments cannot simply quadruple their sample size for logistical reasons,

like recruiting enumerators or visiting locations, even if funds permitted.

When increasing N is not an option, we have discussed two design choices—block randomized and

pre-post designs—that the literature promotes as particularly simple and effective ways to increase

precision. To see how these designs increase precision, consider the standard error of the ÂTE in

Equation 2. Block randomized and pre-post designs achieve precision gains by reducing V ar(Yi(0))

and V ar(Yi(1)).4

However, any precision gains are called into question if block randomized and pre-post designs also

inflict precision costs by reducing N . Put simply, as long as the numerator decreases more than

the denominator decreases, or the variance in the potential outcomes decreases more than any

resulting loss in sample size, the standard error will decrease in turn. This is how experimental

design choices influence SE(ÂTE).
4We set aside the role of the covariance in potential outcomes by assuming it is held constant.
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3.2 Block Randomized Design

One way to decrease SE(ÂTE) is to adjust the randomization procedure to block randomization.

Block randomization requires the researcher collect pre-treatment covariates expected to correlate

with potential outcomes. Then, the researcher groups observations into blocks or strata along these

covariates, conducts randomization within each block, and combines results across blocks with a

weighted difference-in-means estimator.

More formally, we now have B blocks and nb units per block. In each block, we assign mb units to

treatment and nb − mb units to control. The proportion of treated units per block does not need

to be the same across blocks. Because randomization occurs within each block, we can consider

each block as if we are conducting an independent experiment. The block-level ATE estimator is

ÂTEb = E[Yib(1)|Zib = 1] − E[Yib(0)|Zib = 0]. The most common estimator for the overall ATE

combines estimates across blocks by weighting block-level ÂTEb depending on the size of the block.

We call this estimator ÂTEBlock.

ÂTEBlock =
B∑

b=1

nb

N
ÂTEb. (3)

Like the ÂTEBlock, the true standard error is a weighted average of within-block standard errors

(Gerber and Green 2012, 74):

SE(ÂTEBlock) =

√√√√ B∑
b=1

(
nb

N

)2
SE2(ÂTEb). (4)

Block randomized experiments yield more precise estimates than the standard design when the

researcher creates blocks with covariates that correlate with potential outcomes. This is because

the variance of the potential outcomes is smaller within each block (Imai, King, and Stuart 2008).

Blocking can use a single covariate to stratify, like partisanship, or groups formed by overlapping key

covariates, like partisanship and gender. The literature recommends blocking on all pre-treatment

information available to a researcher using multivariate blocking procedures that collapse many

variables into groups of comparable observations (Moore 2012). But, usually, researchers can

only afford to block on discrete covariates, and these are collected at their own expense before
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administering treatments.

The more V ar(Yi(0)) and V ar(Yi(1)) shrink within each block, the more the variance of the potential

outcomes component of SE(ÂTEBlock) shrinks relative to the standard design. However, this

statistical benefit only applies if sample size is not affected. By examining Equation 2, we can

see that if the denominator decreases as the numerator decreases, the positive effects of the block

randomized design choice on precision are called into question.

3.3 Pre-Post Design

Another way to decrease SE(ÂTE) is by measuring the outcome variable before treatment assign-

ment in addition to the usual post-treatment measurement. We focus on what Clifford, Sheagley,

and Piston (2021) refer to as the “between-subjects pre-post design,” but we simply call it the

“pre-post” design. The additional pre-treatment information gathered via this design is then used

either to rescale the outcome as a change score (Allison 1990) or as a regression control variable

(Lin 2013) in the estimation of treatment effects. In what follows, we demonstrate the differencing

approach since it is more analogous to the true SE(ÂTEStandard) introduced above. Change scores

are unbiased estimators for a pre-post design, but covariate adjustment may yield more precise

estimates (Lin 2013). Appendix C discusses the covariate adjustment approach.

All assumptions for the standard design and ATE remain the same as in subsection 3.1, but now

we observe a pre-treatment measure of the outcome for each unit (Yi,t=1) in addition to the post-

treatment observed outcome (Yi,t=2). We make an additional assumption that because Yi,t=1 is mea-

sured before treatment, its value does not depend on the potential outcomes: Yi,t=1 = E[Yi,t=1] =

E[Yi,t=1|Zi = 1] = E[Yi,t=1|Zi = 0].

The estimator for the ATE is analogous to ÂTE, but now replacing the outcome of interest with

the difference in outcomes before and after treatment:

ÂTEDiff = E[(Yi,t=2(1) − Yi,t=1)|Zi = 1] − E[(Yi,t=2(0) − Yi,t=1)|Zi = 0]. (5)

This is the difference in differences estimator. It is also an unbiased estimator of the ATE. In the
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hypothetical case of Yi,t=1 being equal to zero across all units, then ÂTEDiff is equivalent to ÂTE.

The standard error is (Gerber and Green 2012, 98):

SE(ÂT EDiff) =
√

Var(Yi,t=2(0) − Yi,t=1) + Var(Yi,t=2(1) − Yi,t=1) + 2Cov(Yi,t=2(0) − Yi,t=1, Yi,t=2(1) − Yi,t=1)
N − 1 .

The more predictive Yi,t=1 is of Yi,t=2, the more the variance of the potential outcomes in the

numerator of SE(ÂTEDiff) shrinks relative to the standard design. However, like with block ran-

domization, these benefits of pre-post designs require sample size is not adversely affected. If the

denominator decreases as the numerator decreases, the effects of the pre-post design choice on

precision are called into question. In other words, if there is potential sample size loss due to im-

plementing a pre-post design, the researcher now needs to balance the components of SE(ÂTEDiff)

when designing their experiment. Thus, like with block randomized designs, these precision gains

can be questioned if sample loss accompanies the design choice.

3.4 Combining Alternative Designs

Block randomized and pre-post designs are not mutually exclusive strategies, and the lines divid-

ing each strategy are blurry. The choice of alternative strategies in this article reflects not only

the decision of whether to invest in measuring covariates before treatment, but also what to do

with those variables. Block randomization pertains to how units are partitioned into treatment

and control groups, constraining the set of potential randomization schemes to those that we have

good reason to believe have lower SE(ÂTE). This implies block randomization performs better

for covariates that are expected to correlate with potential outcomes. Pre-post designs focus on

decreasing noise during estimation of treatment effects, thus after treatments have been adminis-

tered and outcomes have been measured. In this case, the aim is to choose outcomes (or covariates)

that are highly predictive of outcomes. Since the strategies we discuss reflect different reasons to

invest in measuring pre-treatment information, a researcher can use both strategies simultaneously

by using pre-treatment information to assign treatment within block and to redefine the outcome

(or use covariate adjustment).
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4 Current Use of Alternative Designs to Increase Precision

How common are alternative designs in political science? Many applied experimentalists may

follow statistical advice to use pre-post and/or block-randomized designs to increase precision.

Alternatively, these designs might be rare, yet experiments still achieve sufficient precision. We

review the applied experimental literature to answer whether important precision gains seem likely

from increased use of these designs.

To conduct this review, we hand coded features of experiments in articles published in 2022-

2023 in six political science journals. We reviewed The American Political Science Review, The

American Journal of Political Science, and The Journal of Politics as the field’s major general

interest journals. These journals publish experiments that come from all subfields, implement

different experimental designs, and reach a wide audience. However, these experiments may not

reflect the modal design in the discipline. Most notably, these experiments may have had larger

budgets to allow for pilot testing, larger samples, and other design features to increase precision.

Therefore, we also review three additional journals. We include Political Behavior and Comparative

Political Studies as two subfield journals where experiments are commonly published, and we include

The Journal of Experimental Political Science as the discipline’s journal devoted to experimental

research. This set of journals allows us to survey how applied experimentalists currently balance

precision and retention concerns.

We collect all full-length articles with at least one original randomized experiment, resulting in

227 articles and 366 unique experiments. We sampled approximately 50% of these articles for our

analysis. Our sample has 121 articles and 216 unique experiments. For sampled articles, we read

the methods, results, and discussion sections to hand code each experiment separately for several

experimental design concepts. We discuss the details of our inclusion criteria and hand coding

procedure in Appendix D.

Table 2 shows our results. We found 85% of the experiments did not use pre-post or block random-

ized designs. Only 5% used a pre-post design, 7% used a block randomized design, and less than 3%

used pre-post and block randomization together. These results demonstrate that the alternative

designs of interest in this article are infrequently used by experimental political scientists.
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Table 2: Current Use of Alternative Designs to Increase Precision

Prevalence Median (IQR) Sample Size Median (IQR) Arms

Neither 85% (184) 1382.5 (801, 2495.5) 4 (2, 6)
Only prepost 5% (10) 5068 (1057.5, 6042) 3 (2, 3)
Only block randomization 7% (16) 1545.5 (128, 2768) 2 (2, 3)
Both prepost and block randomization 3% (6) 1230 (734.5, 2448.5) 3 (2.25, 3.75)

Note: The second column shows the percentage of designs used in a sample of 216 experiments from
articles published in 2022-2023, with the number of experiments in parentheses. The third and fourth
columns show the median sample size and number of experimental arms per type of design, with the in-
terquartile range in parentheses.

However, 92% of the experiments that did not implement either design mentioned having pre-

treatment covariates. We do not know whether these covariates were well-suited for pre-post or

block randomized designs. However, having pre-treatment covariates suggests that many designs

likely had the opportunity to use this information or collect additional information that could be

used in a pre-post or block randomized design.

We also cannot quantify how collecting different or additional pre-treatment covariates might lead

to implicit or explicit sample loss. However, we can characterize the high stakes of this decision. We

collected the sample size and the number of experimental conditions in each experiment. Among the

experiments that did not implement pre-post or block randomized designs, the median sample size

was 1382 and the median number of experimental conditions was 4. While we cannot say the median

experiment is underpowered, it is also not a foregone conclusion that a design with these features

would be sufficiently powered, especially given meta-analytic evidence showing political science

experiments are greatly underpowered (Arel-Bundock et al. 2022). This characterizes the puzzle

facing researchers when considering the implementation of pre-post and block randomize designs.

The median political science experiment likely has room to make critical precision gains that will

enhance the experiment’s ability to detect true treatment effects with greater certainty. At the same

time, any design decision that would sacrifice sample size by asking additional questions (incurring

implicit sample loss) or by introducing conditions that increase unit’s likelihood of dropping from

the study (incurring explicit sample loss) ought to be carefully considered. This article guides

applied researchers through balancing these competing components of precision.
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5 Benefits of Designs to Increase Precision in Applied Settings:

Experimental Evidence

To assess whether and to what extent alternative experimental designs increase statistical preci-

sion even when incurring sample loss, we conducted a preregistered replication of three published

experiments.5 For each experimental replication, we conducted our own experiment. We ran-

domized whether participants were assigned to the standard design (complete randomization and

post-treatment outcome measurement only), a pre-post design (with complete randomization), or

a pre-post and block randomized design. Our replication experiments provide evidence to address

several key questions about implementing alternative designs in practice.

Before presenting this evidence, we describe the replication exercise. We follow the framework

proposed by Harden, Sokhey, and Wilson (2019) for selecting included studies. We summarize each

step of this framework, including defining a population, constructing a sample representative of the

population, and defining the quantities of interest from the replication exercise.

First, we define the population as all published, original randomized experiments in political science

where the goal of the experiment is a substantive finding. To sample from this population, we

utilize the data we collected for our hand coding exercise described in Section 4. In Section 6, we

discuss a simulation exercise that randomly samples from this list of published experiments. In

this replication, we hope to generalize to the population while maintaining feasibility of the original

data collection, so we take a fine-tuned approach to choosing experiments to replicate.

Table 3 lists the three articles we chose.6 We replicate Dietrich and Hayes (2023), Bayram and

Graham (2022), and Tappin and Hewitt (2023), which we refer to as DH, BG, and TH, respectively.

These experiments cover different subfields and are representative of the distribution of experimen-

tal conditions and observations from our population. DH and BG were single-wave studies, like

most survey experiments. TH allowed us to assess a multi-wave study where the first wave solely

collected pre-treatment covariates, like in many field experiments. Finally, it was not possible to

implement a pre-treatment measure of the outcome in the DH replication, as the main outcome
5The preregistration is available at https://doi.org/10.17605/OSF.IO/XJ35P.
6We also preregistered the specific outcome and treatment effect from the original study that would be our focus

in this exercise.
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was a reaction to the experimental stimuli. Therefore, we used a quasi pre-post measure of the

outcome, while the other two replications allowed for a pre-treatment measure of the outcome.

Taken together, these experiments vary key features that affect precision, allowing our evidence to

have some generalizability to the population.

We also chose this set of experiments because they have different motivations for balancing preci-

sion and sample retention. For DH, one of their hypotheses pertains specifically to how African

American constituents respond to rhetoric from members of Congress. Addressing precision con-

cerns via increasing sample size is not always an option in this context, as survey providers often

have a limited number of Black or African American respondents. Researchers who are interested

in small or hard-to-reach populations therefore have a motivation to design their experiments to

increase precision through other means. We chose BG as a standard example of how an exper-

iment can always consider alternative designs with an eye toward increasing precision, and thus

their confidence in their conclusions, even when power analyses at the design stage suggest the

experiment achieves conventional levels of power. Finally, TH assesses whether the effect of party

cues on issue attitudes persists over time. We chose to replicate this experiment because treatment

effect durability is an important concern in experimental political science—particularly in survey

experiments—to contextualize the political relevance of treatment effects (Gaines, Kuklinski, and

Quirk 2007). Moreover, to assess durability, researchers must consider the cost of remeasuring

outcomes and whether their design will be powered to detect treatment effects immediately and in

the future when attrition has occurred and the effect has likely decayed.

For each replication study, we assess how alternative designs affected sample loss and precision

relative to the standard design. Table 4 outlines how we implemented the designs and the number

of participants randomized to each design per study. DH and BG were both single-wave survey

experiments. DH and BG asked 7-8 survey items in the standard design, and 3 and 4 additional

items, respectively, in the alternative designs to collect a pre-treatment measure of the outcome

and predictive covariates. The standard and pre-post design assigned participants to treatment

conditions using complete randomization, while the block randomized design assigned treatment

within 15 and 6 unique blocks, respectively, based on a predictive covariate and the pre-treatment

measure of the outcome. Finally, TH was a 3-wave study. Wave 1 asked 6 demographics in the
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Table 3: Key Features of Sample Articles Representing Population

Dietrich and Hayes (2023) Bayram and Graham (2022) Tappin and Hewitt (2023)

Subfield American politics International relations American politics
Number of arms 8 5 2
Number of observations 515 1000 775
Number of waves 1 1 3
Type of prepost Quasi prepost Prepost Prepost
Primary precision concern Hard to reach population Increased confidence Detecting effect persistence

standard design, and an additional 12 items in order to implement the alternative designs. Wave

2 administered the treatment using complete randomization in the standard and prepost design.

For the block-randomized design, we implemented multivariate continuous blocking between Wave

1 and 2 using demographics, predictive covariates, and pre-treatment measures of the outcomes

collected in Wave 1 (Moore 2012; Moore and Schnakenberg 2023). All studies were survey experi-

ments conducted on CloudResearch Connect. More details on the implementation are available in

Appendix E and our preregistration.

In sum, while only a few questions were added to implement the alternative designs, doing so

significantly increased survey length (43%, 50%, and 110%, respectively). The alternative designs

also added political content pre-treatment. This allows us to asses several concerns that may arise

when implementing alternative designs in practice, which we turn to next.
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5.1 Explicit Sample Loss

First, did alternative designs, requiring longer surveys with more political content, incur greater

explicit sample loss? Appendix Table E2 shows detailed results. DH and BG—both single-wave

studies—featured little explicit sample loss (<1% per design) that was not statistically distinguish-

able between the standard and alternative designs.

To complete the TH study, respondents had to return to take three survey waves across 1-1.5 weeks.

It follows that TH had more explicit sample loss—13.0%, 14.2%, and 20.7% of units dropped at

some point in the standard, pre-post, and pre-post with blocking designs, respectively. The block-

randomized design featured more explicit loss because we implemented multivariate continuous

blocking, utilizing all pre-treatment covariates. The block randomization procedure does not allow

missingness in blocking covariates, so we excluded any observation with missingness in these co-

variates prior to block randomization and treatment randomization. This decision excluded 7.5%

of observations, which explains why this design features more overall sample loss.7

In sum, implementing pre-post and/or block randomized designs did not increase the rates of units

dropping by their own choice, an encouraging result. However, depending on the researchers’

choices when implementing multivariate continuous blocking in a multi-wave setting, this design

may incur additional explicit sample loss. This sample loss is pre-treatment, thus the researcher is

not risking biased treatment effect estimation.

5.2 Differing Sample Composition

It may be a concern to researchers that implementing an alternative design that requires a lengthy

pre-treatment battery may prompt units to drop from the study in a way that alters the sample

with which the researcher estimates treatment effects. We find little to no evidence of this in our

replications. As just discussed, DH and BG had trivially small sample loss and thus no difference in

sample composition. However, in the TH replication, we found sizable sample loss throughout the

three-wave study in all three designs. We use TH to understand whether implementing alternative

designs results in different samples.
7Rather than exclude observations with missingness, a researcher could use imputation for missing values or

exclude covariates with missingness from their blocking algorithm.
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Why might different samples result from alternative designs? First, survey fatigue could cause

units to drop in alternative designs in ways that would make the sample different from the stan-

dard design, such as if fatigue was related to education or age. Second, asking many political items

may cause a certain kind of person to drop from the study at a higher rate than if these items were

not asked, such as people who have a strong aversion or disinterest in politics. Third, as in the

TH replication, if observations are excluded due to missingness in blocking covaraites, and miss-

ingness is related to characteristics such as an aversion to politics or inattentiveness, implementing

multivariate continuous blocking could affect sample composition.

We investigate whether an observation being included in the sample or not is differentially predicted

across designs by any of the pre-treatment covariates we collected (24 demographic indicators).8

We find no evidence of a difference between the pre-post design’s sample and the standard design’s

sample (Appendix Table E3). We find only one instance where the block randomization with

pre-post sample differs from the standard design’s sample.

In sum, we find very little evidence that implementing alternative designs that require more pre-

treatment items may cause the samples with which we estimate treatment effects to differ in impor-

tant ways. However, this evidence is limited as we can only assess the pre-treatment covariates we

observed, and the number of items was limited for budgetary reasons. Nevertheless, this evidence

provides reassurance that sample loss from alternative designs would not result in meaningfully

different samples in similar contexts.

5.3 Differential Post-Treatment Attrition

Next, we turn to examining post-treatment attrition. Two forms of post-treatment attrition pose

a concern when implementing an alternative design. First, will alternative designs cause more

post-treatment attrition? We fail to find evidence that post-treatment attrition rates are different

between the alternative designs and the standard design (final column in Appendix Table E2).

Second, will alternative designs cause attrition that differs between treatment and control groups?

This form of attrition is an important concern as it can compromise the estimation of unbiased
8We also assess whether sample inclusion between the two alternative designs is related to the political measures

we collected, and we find no evidence that sample composition differs between alternative designs (Appendix Table
E4).
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treatment effects. To assess this question, we examine if differential attrition across experimental

arms is explained by different covariates between the alternative and standard designs. We can

only investigate attrition in the TH replication since it was trivially small in the other replications.

We find little evidence that pre-treatment characteristics affect attrition across treatment arms

differently in the alternative designs relative to the standard design (Appendix Figure E3). Only

4 out of 44 demographic indicators examined had patterns of attrition across treatment arms that

differed between the alternative and standard designs. In fact, in 3 of the 4 cases, the covariate is

associated with participants attriting less from the alternative design’s treatment than the standard

design’s treatment. In sum, we encouragingly find little evidence of differential post-treatment

attrition across alternative designs in this replication exercise, again with the caveat that we can

only empirically investigate the characteristics we measured.

5.4 Implicit Sample Loss

Finally, we use the replications to ask, what are the implications for precision when implicit sam-

ple loss occurs as a result of implementing an alternative design? We assess this via simulation.9

Because of small variation in the number of participants assigned to each design (see Table 4), we

begin the simulation with all three designs at the same sample size per study. We then randomly

omit observations from the alternative designs to simulate implicit sample loss, re-estimate treat-

ment effects and standard errors, and assess how statistical precision of alternative designs with

sample loss compares to the standard design without sample loss. We vary the amount of implicit

sample loss from 0 to 50% in increments of 5%. We conduct 1000 random draws of data per sample

size.

Figure 1 visualizes the results. The x-axis shows the hypothetical amount of implicit loss incurred

by implementing an alternative design, varying from 0 to 50%. The y-axis shows the percentage

change in the estimated standard error of the alternative design with sample loss relative to the

standard design without sample loss. The first panel shows results for DH. Without sample loss,

block randomization (dark gray triangles) provides for slightly more precise estimation than the
9We use simulation because, within a given study, the cost to implement the three designs was held constant.

If a researcher were choosing just one design to implement, a longer survey would cost more than a shorter survey,
reducing the sample size on a fixed budget (i.e., implicit sample loss).
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Figure 1: Effects of Implicit Sample Loss on Precision

Dietrich & Hayes Bayram & Graham Tappin & Hewitt
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Note: Figure visualize the effects of implicit sample loss on precision. The x-axis shows the amount of implicit
loss incurred by implementing an alternative design, varying the loss from from 0 to 50% of the sample. The
y-axis shows the percentage change in the estimated standard error of the alternative design with sample
loss relative to the standard design without sample loss (with 95% confidence intervals). Results for the
prepost and block randomized alternative designs are shown with light gray and dark circles, respectively.

standard design. At 5% sample loss, the precision afforded by block randomization is no different

than the precision afforded by the standard design at full-sample. This suggests there is no harm

to precision if implementing block-randomization that requires sacrificing 10% of the sample or

less to afford it. With 10% sample loss or more, block randomization begins to do worse than the

standard design at full sample size.

The results are more surprising for the pre-post alternative design. We find that the pre-post

design, even with no implicit sample loss, has an approximately 15% larger standard error than

the standard design, and it only grows with sample loss. We believe this occurred for two reasons.

First, this replication was the smallest we conducted, with about 430 observations assigned to 8

experimental conditions per design, and the particular treatment effect we preregistered analyzing

only has about 210 participants per design. Ironically, the small sample sizes are likely associated

with a large sampling distribution of treatment effect estimates, increasing the probability the

three designs are not good counterfactuals for each other. Second, we implemented a quasi pre-

treatment measure of the outcome for this design, and it was only weakly correlation with the

outcome (r=0.28).10 Taken together, the quasi pre-post design, even with a weak correlation,
10The outcome in the DH replication measured a reaction to the experimental stimuli, specifically if they approved

of what the legislator said in a speech discussing civil rights that either did or did not employ civil rights symbolism.
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should improve precision relative to the standard design. Nonetheless, the pre-post design was less

precise, likely due to sampling variability.

The second panel shows results for BG. Here, pre-post and block randomization provide large pre-

cision gains (over 30%) when no sample loss is incurred. In fact, both alternative designs improve

precision of the estimated treatment effect, even with a sample size half as large as the standard

design. The pre- and post-treatment outcomes feature strong correlation (r=.70). Asking this item

pre-treatment and incorporating it into the design via pre-post estimation or block randomization

provided sizable precision gains. The block randomized design used a second pre-treatment covari-

ate to compose blocks; however, using this additional information did not result in precision gains

distinguishable from the pre-post design.

The third panel shows results for TH. Again, both pre-post and block randomized designs have

sizable increases in precision (25%) relative to the standard design when there is no sample loss.

Even at 20% sample loss, block randomization has slightly better precision than the standard

design with no loss. Pre-post performs even better in this context. The pre- and post-treatment

outcomes feature strong correlation (r=.69). Like with BG, the pre-post design is achieving similar

precision with half the sample size as with standard design. In sum, if a researcher did not wish to

prime participants by asking a pre-treatment item in the same wave as the post-treatment outcome

measurement, or if a researcher must implement pre-treatment outcome measurement in a separate

wave for logistical reasons, this replication shows that using pre-treatment information provides

precision gains that could withstand sizable sample loss (near 50%).

In summary, this evidence shows that block randomized and pre-post designs provide significant

precision gains over the standard design that can withstand large sample losses when pre-treatment

information has a strong correlation with the outcome. When this correlation is weak, such as in

the DH replication, precision gains that offset sample loss quickly diminish.

Because we could not measure this pre-treatment, we asked a quasi pre-treatment outcome instead, asking “How
important is it to you that current members of United States Congress publicly address their commitment to civil
rights?” We expected this to be predictive of the outcome by capturing personal importance of such actions.
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6 Benefits of Designs to Increase Precision in Applied Settings:

Simulation Evidence

To complement our experimental evidence, we next use simulations that allow us to better assess

the kinds of pre-treatment and blocking covariates alternative designs ought to use to increase

precision that offsets any incurred sample loss.

Rather than simulate entirely fabricated data, our simulations use data from a set of published

experiments. We randomly sample six experiments from sample described in Section 4. To increase

the generalizability of our findings to political science experiments, we randomly sampled one

experiment from each of the six journals included in our review.11 Table 5 presents key features of

the six experiments. As intended, our sample includes different research topics, areas of the world,

sample sizes, and number of experimental arms. The ratio of survey and field experiments is also

a good reflection of the distribution in our target population.

Each experiment in Table 5 constitutes a separate simulation. Broadly, the first step is to use the

original study’s data to model the relationship between the outcome, treatment, and covariates.

We then simulate potential outcomes from this model, administer the standard and alternative

designs, and assess each design’s statistical precision.

To generate an assumed true model of the world, we first narrowed our focus to one treatment

effect of interest. We did so at the preregistration stage, blind to the data. In experiments with

multiple treatment arms, we preregistered a treatment effect for each study that was central for the

original article’s argument. Similarly, if multiple outcome variables were used, we chose to focus

on one of the main outcomes of interest.

After posting our preregistration, we used the replication data to model the outcome as a function

of (1) actual treatment assignment in the experiment, (2) a simulated pre-treatment measure of the

outcome, (3) a simulated pre-treatment blocking covariate, and (4) a set of actual pre-treatment

covariates collected in the original study. For the simulated variables, we vary the extent to which

they correlate with the outcome (r ∈ [0.25, 0.50, 0.75]). For the actual set of pre-treatment covari-
11See the preregistration materials at https://doi.org/10.17605/OSF.IO/KPWY6 for specific details on our sam-

pling strategy and inclusion criteria.

24

https://doi.org/10.17605/OSF.IO/KPWY6


Table 5: Experiments Sampled for Simulation

Original experiment Simulation

Study Article Type Arms N Country n Blocking Covariates Predictiveness

1 Galasso et al (2023) Survey 6 2971 Italy 946 7 Low
2 Manekin and Mitts (2022) Survey 12 3013 United States 2784 3 High
3 Lyon (2023) Survey 3 1029 Uganda 561 4 Low
4 Goerger et al (2023) Field 2 2942 United States 2712 5 Moderate
5 Curiel et al (2023) Field 2 275 Colombia 275 7 Low
6 Simas (2022) Survey 2 1176 United States 1175 2 Moderate

Note:
We assess the predictiveness of blocking by estimating OLS regressions for each outcome against the corresponding
covariates. We consider predictiveness as "high" if all covariates have large coefficients, "moderate" if only some variable
have large coefficients, and "low" if all coefficients are small. See Appendix Table F8 for results.

Table 6: Designs Included in Simulation

Design Description

1. Complete + post-only (Standard design) Complete randomization; pre-treatment outcome is not
measured or used when estimating ÂT E

2. Complete + pre-post Complete randomization; pre-treatment outcome is
measured and used as a predictor when estimating ÂT E

3. Block on one covariate + post-only Block randomization using one pre-treatment covariate;
pre-treatment outcome is not measured or used when
estimating ÂT E

4. Block on one covariate + pre-post Block randomization using one pre-treatment covariate;
pre-treatment outcome is measured and used as a
predictor when estimating ÂT E

5. Block on all covariates + post-only Block randomization using all selected and simulated
pre-treatment covariates; pre-treatment outcome is not
measured or used when estimating ÂT E

6. Block on all covariates + pre-post Block randomization using all selected and simulated
pre-treatment covariates; pre-treatment outcome is
measured and used as a predictor when estimating ÂT E

ates collected in the original study, we consulted the article and replication archive documentation

to preregister a set of covariates we expected to be best predictive of the outcome, but without

conducting any analyses, to mimic a researcher at the design stage as much as possible.12 Next,

we assumed true model as the data generation process for potential outcomes. Finally, we then

simulate treatment assignment and treatment effect estimation under six different research designs,
12Appendix F explains deviations from our preregistration and reports the results as originally preregistered. We

found that the majority of variables we designated blocking and quasi outcome covariates had very low correlation
with the outcome (Appendix Table F8). This is understandable as they were not originally included in the designs for
these purposes. This meant our preregistered results did not reflect the context where a researcher is choosing the best
variables for alternative designs. Therefore we instead simulate varying degrees of predictiveness of pre-treatment
information to better capture the relationships researchers are likely to be working with. The lack of predictive
pre-treatment information in our sample highlights that researchers are not necessarily currently collecting covariates
that are good candidates as pre-treatment measures for pre-post designs, and must consider adding measurement of
pre-treatment outcomes to their studies.
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shown in Table 6.

Our simulations assume that the standard design does not incur sample loss. For every other design,

we varying the degree of sample loss by randomly dropping a proportion of units between 0 and

0.5. We simulate 1,000 hypothetical experiments for every design, degree of correlation between

the pre-treatment outcome or blocking covariate, and degree of sample loss.

Figure 2 presents the results. We conduct F-tests to compare the alternative design in each column

against the standard design. The vertical axis presents the test statistic as the ratio of variance

of the simulated ÂTE’s between a given alternative design under sample loss and the analogous

standard design without sample loss. If this statistic is distinguishable from one, the evidence

suggests the two variances are different from each other. Because the standard design does not

incur sample loss, its variance remains unchanged along the horizontal axis per plot. Therefore,

test statistic values smaller than 1.0 indicate that the variance of the simulated ÂTE’s is smaller

under the alternative design, which suggests that the alternative design is preferable even after

incurring sample loss. For example, a value of 0.5 suggests the variance of the alternative design is

half the variance of standard design. Conversely, test statistic values larger than 1.0 suggest that

the degree of sample loss undermines any precision gains from implementing an alternative design.

In all six studies, including a pre-treatment outcome or covariate that weakly correlates with the

outcome (r = 0.25, lightest gray line) is not enough to overcome the decrease in precision from

sample loss. We only see a benefit in alternative designs with weak pre-treatment information once

we incorporate additional blocking covariates in study 2, but these precision gains only withstand

up to 10% sample loss before the variance in the alternative design becomes indistinguishable from

the standard design.

Moderately correlated variables (r = 0.50) are sufficient by themselves to improve precision in

studies 1 through 4. In this group, the worst performance lies in study 3, where precision gains

only withstand up to 20% sample loss under the Complete + Pre-post design. The best performance

lies in studies 1, 2, and 4, where all feature precision gains over the standard design even with up

to 50% sample loss under the Block one + Pre-post design column.

As expected, performance only improves when we include highly correlated variables (r = 0.75).
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Figure 2: Precision Gains from Alternative Designs Under Varying Predictiveness of
Pre-treatment Information and Degrees of Sample Loss
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Note: Columns represent alternative designs, rows indicate studies in the order listed in Table 5. Test
statistics are calculated based on 1,000 simulated experiments for each study, research design, degree of
sample loss, and degree of correlation between the pre-treatment information and the outcome.

In this case, all designs in studies 1-4 have precision gains relative to the standard design, even

when incurring up to 50% sample loss. Study 5 has precision gains over the standard design with

up to 30-40% sample loss even though alternative designs did not improve precision at previous

correlation levels. Even Study 6 has precision gains over the standard design with up to 20% sample
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loss as long as its design combines blocking and pre-post measurement.

More generally, sample loss rarely makes studies 1-4 perform worse than the standard design under

the current simulation parameters. Why is this not the case for studies 5 and 6? As Table 5

suggests, Study 5 has the smallest sample size in our sample, making even modest amounts of

sample loss consequential and requiring highly correlated variables to make alternative designs

attractive.

Study 6 has a larger sample, but the outcome variable we selected is the difference between two

aggregate measures that average over four indicators each (see Simas 2022 for details). This results

in a continuous outcome centered at 0 with an interquartile range of [−0.50, 0.25]. With little

variance in the outcome, there is not much room to improve precision through alternative designs,

making any sample loss consequential.

7 Guidelines at the Design Stage

While the decision to collect additional pre-treatment information and implement an alternative

design needs to be considered on a case-by-case basis, we conclude by enumerating common con-

cerns we believe arise when deciding to implement an alternative design and how we recommend

approaching them.

1. How much explicit sample loss should a researcher expect from an alternative design? Pub-

lished articles typically state the experiment’s starting sample size and the size of the sample

with which the treatment effects are estimated after any explicit sample loss. We recommend

researchers leverage this information from recent experiments in similar contexts to inform ex-

pected explicit sample loss rates. For example, the landscape of online survey takers changes

rapidly, thus recent experiments conducted on a given platform (e.g., MTurk, Prolific, Lucid,

etc.) will provide the best information about expected loss.

To assist in this, as a part of this article’s replication archive, we provide a dataset describing

216 experiments, described in Section 4. A researcher can consult this dataset at the design

stage to find examples of experiments similar to their own planned design to reference for
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explicit sample loss rates. Our data include whether the experiment implemented pre-post

and/or block randomization, the type of experiment (survey, lab, field), what vendor was

used to field the experiment (if available), and more.

We have also created an R package called simprecision to conduct simulations to estimate

precision gains or losses from implementing the standard and alternative designs described in

this article. The function allows the researcher to vary many design features, including sample

loss incurred from implementing an alternative design. The simulations and visualizations in

Section 6 are examples of the package’s functionality.

2. How much implicit sample loss should a researcher expect from an alternative design? As-

sessing implicit sample loss is something exclusively available to the individual experimenter

since they typically negotiate with survey firms or implementation partners on their own be-

half about the cost and length of surveys and interventions. Therefore, individual researchers

are best suited to assess how much implicit loss to expect from various design choices. As

with explicit sample loss, researchers can use the simprecision R package to simulate how

varying degrees of implicit sample loss incurred from alternative designs affect precision.

3. How should a researcher assess the predictiveness of pre-treatment outcome and blocking co-

variates at the design stage? While a researcher’s initial impulse may be to conduct a pilot

study to obtain measures of the predictiveness of pre-treatment variables, we advise against

this. If not already cost prohibitive, it possibly decreases the size of the sample they can

afford in the full study (a form of implicit sample loss). Moreover, false positive results in

pilots with small samples may mislead the researcher into selecting variables that are not

highly predictive of the outcome.

A more promising avenue would be to combine domain expertise with information from

previously conducted experiments. For example, in our replication studies, the correlations

between pre- and post-treatment outcomes were rDH = .28 (quasi measure), rBG = .70, and

rT H = .69. Across six survey experiment replication studies, Clifford, Sheagley, and Piston

(2021) find pre-post treatment outcome correlations ranging from r = .60 to r = .90.

We do not have comparable evidence for the expected predictiveness of blocking covariates.

29



We recommend researchers use their own expertise and leverage data from previous exper-

iments if they are concerned about this correlation. In the case of survey experiments, one

could also use data from existing public opinion surveys. Finally, simprecision allows re-

searchers to vary the predictiveness of pre-treatment outcomes and blocking covariates to see

its expected effects on precision, as we demonstrate in Section 6.

4. Is it a concern that the sample for estimating treatment effects may change under an alter-

native design? We find little evidence of this in Section 5.2. However, at the design stage,

researchers ought to clearly state their estimand of interest as either a sample average treat-

ment effect (SATE) or a population average treatment effect (PATE) (Hartman 2021). If

the estimand is a SATE, the SATE itself may change depending on the design fielded and

the sample recruited. However, both the standard and alternative designs will provide for an

unbiased estimator of the SATE. If the estimand is a PATE, researchers need to be more cau-

tious to ensure an alternative design does not affect the ability of their sample to generalize

to the population.

5. Is it a concern that alternative designs cause differential post-treatment attrition across treat-

ment arms? We find little evidence of this in Section 5.3. It is important to note that our

results are from online survey experiments where participants are likely accustomed to lengthy

batteries and desire to finish the task for compensation. We expect it is more important to

consider potential differential attrition across treatment arms caused by an alternative design

in field experiments where participants do not have the same incentive structure.

8 Conclusion

Previous work proposes deviations from the standard experimental design to improve statistical

precision under the assumption that sample size is not affected. This article develops standards to

choose among alternative designs under explicit or implicit sample loss. In doing so, we join the

conversation on the benefits of simulating experimental designs during the design stage (Blair et

al. 2019). Our systematic treatment of the common, competing components of precision highlights
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how researchers may simulate their experimental design to specifically look for and seek to opti-

mize precision. We hope researchers simulate their designs to understand the extent to which the

precision gains of incorporating pre-treatment information into their design in the form of block

randomization and/or pre-post measurement withstands any possible sample size attenuation, per-

haps even finding that some sample loss is worth it for large precision gains that can come from

these design choices.

This article advances three important conversations in the political science research design litera-

ture. First, this article sheds light on how to balance theoretically advantageous design decisions

when practical concerns arise. We think it is critical that research unpack and speak directly to best

practices, straddling between a statistical understanding afforded by textbooks and a practical un-

derstanding of what it takes to implement an experiment. The latter knowledge is acquired through

trial and error and conversations with advisors and colleagues, and our article aims to incorporate

practical concerns into the public, published conversation on experimental design. Critically, we

systematically investigate the competing components of precision rather than rely on anecdotal

experience from prior studies. We hope this article encourages more research in this vein.

Second, we shed light on one practical concern that we suspect underlies researchers’ hesitancy to

implement block randomized and pre-post designs. Researchers will avoid design alternatives that

might prompt any explicit or implicit sample loss, fearing the negative consequences on precision

and power. In line with this caution, our article shows that blindly implementing theoretically

beneficial design choices can have inadvertent consequences when practical concerns are consid-

ered. However, researchers’ caution may be leaving large precision gains on the table. Following

intuition alone, which may steer a researcher toward preserving sample size above all else, is not a

good strategy, as we show that non-negligible sample loss resulting from strong implementation of

alternative designs can result in large precision gains.

Third, we join an important trend in political science emphasizing the pre-analysis stage of ex-

perimentation. Our guidelines do not replace a case-by-case understanding of a design’s precision,

but we hope our findings lay a path for researchers to understand and consider the competing

components of precision in their experiment.
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